HowTo 'BGX’

Anne-Mette K. Hein, Imperial College London

Sept. 2005

1 Introduction

This note describes how to use ’bgx’. 'bgx’ is a C+-+ implementation of a
Bayesian hierarchical integrated approach to the modelling and analysis of
Affymetrix GeneChip arrays. The model and methodology is described in
(Hein et al, 2005).

There are two ways to run 'bgx’: (1) through R and (2) as a standalone
C++ program. These are described below. Both ways make use of probe
level GeneChip data. To obtain the data in a format usable by 'bgx’ you
must have the GeneChip .CEL files and you must use the R-package ’affy’
to process the CEL-files. This is also described below.

'bgx’” produces samples of posterior distributions of each parameter in
the 'bgx’ model. When you are analysing many genes and many arrays
there are a very large number of parameters in the model (2*number of
probes’+2*' number of genes’ + a few more). Consequently the full output
can be enormous. To accomodate this Varying degrees of detail in the output
of a ’bgx’ analysis can be chosen (see below). A number of R-functions are
supplied that provide useful summaries of the output files in terms of plots
or tables. There are many other sumamries and plots that maybe of interest
and can be produced from the bgx output. The provided functions maybe
used as inspiration for handling and making your own functions of choice for
the 'bgx’-output. The available functions are described below.

2 Reading CEL files in to R

First you must read your CEL-files into R. This can be done as follows:
1. Start R

2. download the ’affy’ library from the 'bioconductor’-website (http://www.bioconductor.org).
You can do this by using the 'packages’ dropdown menu, and choosing
‘install packages from bioconductor’.

3. load the affy library:
library (affy)



4. Read in your CEL-files. You can e.g. do this by changing your working
directory (using ’change dir’ in the ’file’ dropdown menu) to the direc-
tory where you keep the CEL-files you want to analyse and then use
the 'ReadAffy’ R function:

mydata=Read Affy()

The CEL-files in your working directory are then read in to an affy-

batch object which you have called 'mydata’. They will be read in in

alphabetical order. Alternatively you can specify which CEL files are

to be read in explicitly by specifying the path to them and their name as

in: ReadAffy(files="path/to/filex/filex. CEL”,” path/to/filey /filey.CEL”...,” path/to/filew /filew.CEL”)
where "path/to/file’ specifies the directory and subdirectories where the

CEL files are kept, and ’filex.CEL’ is the name of a CEL file.

3 Running ’bgx’ through R

R-functions that allow you to run ’bgx’ through R is provided in the file
'bgx.R’ which is kept in the 'R’ sub-directory of the bgx directory. The
functions make use of a .dll file, 'bgx.dIl’, which has been created from the
C++ code and is provided in the directory bgx/bin. You need not concern
yourself with this, but you must keep the structure of the bgx-directory as
it is, in order that the R-functions can find the files they need. To run 'bgx’
from R on your CEL-files you should proceed as follows:

1. First read in you CEL-files in R (go through steps 1 to 4 of 'Reading
in CEL files to R’.)

2. change your working directory to be ’bgx’.

3. source in the bgx-R functions in the 'bgx.R’ file:

source("R/bgx.R”)

4. You have now available the R-functions written in the file bgx.R. To
run bgx you need to use the 'bgx’ function. A call of the 'bgx’-function
may look as follows

bgx(mydata,run="torture” ,samplesets=c(2,2),genes=myGenes,genesToWatch=NULL,serial=FALSE)

Here 'mydata’ must be an affy-batch object (as the one you obtained
when you read in your CEL files using ReadAffy()). The parameter
Tun’ specifies the run-length and detail of output and must take one

2



YY)

of the values "torture”, ”diagnostic”, ”full”, ”long”, ”confirm” or ”ex-
plore”. To see what each of these signify have a look in the file bgx.R
or type ’bgx’ in you R-window and hit the enter-key and look at the
bgx-function code scroll over the R-window. The parameter ’sample-
sets’ specifies the number of replicates in each condition. If specified
as 'c(2,2)” it will treat the first two arrays read into R as replicates
under condition 1, and the next two as replicates under condition 2.
Note that you have to make sure that the CEL-files are read in by
ReadAffy so that all condition 1 files are read in first, followed by
all condition 2 files, etc. (see the preceding section for how to read in
CEL-files). You can have an unequal number of replicates, and just one
replicate under a condition, and you can analyse more than two condi-
tions. E.g. samplesets=c(1), samplesets=c(2), samplesets=c(1,1) and
samplesets=c(2,1,4) are valid options. The parameter ’genes’ allows
you to specify a subset of genes to be analysed. If 'genes’ is not speci-
fied all genes will be analysed. Example subsets of genes are: ¢(1:10),
¢(3:104), seq(1, 100, by=10), ¢(3,35,88). In the R-language these corre-
spond to (1,2,---,10), (3,4, --,104), (1,11,21,---,91) and (3,35,88). The
parameter genesToWatch allows you to specify a subset of genes for
which samples from the full posterior distributions of ALL related pa-
rameters (including S,; and H,; are collected. As this creates a very
large amount of output it should be left as NULL in general, and if
used should be used for only a few genes as the amount of amount
generated is extensive. The implementation of functions to produce
standard plots that use the extensive output is in progress. The para-
meter ’serial’ allows each of the CEL files in the 'mydata’ affy-batch
object to be analysed separately as one replicate under one condition,
one by one.

Running ’bgx’ as a C++ standalone pro-
gram

The C++ ’bgx’ program takes five input files: ’infile’, "PM.txt’, "MM.txt’,
'SS.txt” and "PS.txt’. These are produced by running the R-function ’stand-
alone.bgx’.

1.

First read in you CEL-files in R (go through steps 1 to 4 of 'Reading
CEL files in to R’.)

. source in the R-functions in the file ’bgx.R’ (go through steps 2 and 3

in 'Running 'bgx’ through R’).



3. run the standalone.bgx function. E.g.:
>standalone.bgx(mydata,run="torture” ,samplesets=NULL,genes=NULL,prefix="")

The parameters are similar to those of the bgx-function. The required
files for use with the C+4++ standalone program are produced. For
further description see the README file in the bgx-directory.

5 How to use the bgx output

'bgx’ produces a number of files, depending on the value of the parameter
run’. The file "bgxPosteriorPlots.R in the 'R’ directory contains a number of
R-functions that use output files which are produced when the output level of
the run is "diagnostic”, that is, when the 'run’ parameter is set to ”torture”,
"experiment”, "full” or "long”. Some of the functions may also be used with
less extensive output files. A description of each of the available functions
are given below. Many other plots and tables may be of interest and pro-
duced from the output files by creating your functions. WHEN RUNNING
THESE R-FUNCTIONS YOUR WORKING DIRECTORY MUST BE THE
DIRECTORY CONTAINING THE OUTPUT FILES.

densityPlotsLogPMsandMMs The function plots kernel-density plots of
the sets of log(PM), of log(MM) values and of log(PM-MM) values
(with PM>MM only). One curve is produced for each array. The
function has two parameters: ’data’ and 'genes’. Data should be an
affy-batch object, genes the list of genes whose probes should be in-
cluded (’genes=NULL’ means all genes). Example call:

densityPlotsLogPMsandMMs(mydata,genes=c(1:1000))

densityPlotsLogSandHandmu Plots kernel density plots for log(S + 1),
log(H + 1) and p. For log(S + 1) and log(H + 1): one per array, for u:
one per condition. Condition specific line types are used. There are no
parameters to this function. Example call:

densityPlotsLogSandHandmuy()

muMAplots Plots mean(ys,,)-mean(gi, ) against 0.5* (mean (s, )+mean(y,))
for all pairs of conditions (¢;, ¢;), with ¢; = 1, ...,numberConditions and
¢; = ¢j + 1, ... numberConditions. A loess curve is fitted and plotted to
each plot. There are no parameters to this function. Example call:

muMAplots()



createMuSummaryTable This function producing a table with summaries
of the analysis. The table has one row per gene and the following
columns:

row 1: the gene number (obtained when reading CEL files in R)

row 2: an indicator for whether the gene was included in the ’gen-
esToWatch’ list. 1: if yes, 0: if no (default)

rows 3 and 4: mean and sd of yu,

rows 242*C-1 and 2+42*C: mean and sd of pc (C: number condi-
tions analysed)

rows 242*C+1 to 2+2*C+8: mean(us—p1), sd(pe—p1), mean(pus—
p11)/5d(pt2 — pa), rank(abs(mean(pz — 1) /sd(p2 — p11))), mean (12 —

pi-loess) /sd (e — g1 ) rank(abs(mean (g — p1-loess) /sd(ps — p1))),
loess, Posterior Probability of po — p1-loess;0

rows 2+2*C4numberPairs*8-7 to 24+2*C+numberPairs*8: as
above but for the last pair.

Here "loess’ is the loess fitted curve to the MA plot of mean(ficong,) on
mean (fleond, ), and "last pair’ is the last pair when the pairs of conditions
are ordered as: (1,2), (1,3), ... , (1,C), (2,3),(2,4), ... , (2,C), ..., (C-
1,C). There are no parameters to this function. Example call:

createMuSummaryTable

makePostDistrMuBGXindex produces a table displaying quantiles of
the posterior distribution for the bgx gene expression index for a given
condition. The table has the format: row(=gene) by column(=quantile).
Quantiles are: 2.5, 5, 10, 25, 33, 50, 66, 75, 90, 95, 97.5 %. The func-
tion takes one parameter: the condition. Example call: the following
produces a table containing quantiles of the posterior distribution of
gene expression for the genes under condition 2:

makePostDistrMuBGXindex(2)

makePostDistrMuBGXPairDiff : the function produces a table display-
ing quantiles of the posterior distribution of differential expression be-
tween two conditions (condl-cond2) after subtraction of the loess nor-
malisation curve. This curve is obtained from the MA plot for the

bt



mean u values. The conditions, condl and cond2, are parameters to
the function. The table format is as for the function 'makePostDis-
trMuBGXindex’. The following example function call creates a table
displaying the posterior distributions of the differences in expression
between condition 3 and 1 after subtraction of the loess normalisation

curve:
makePostDistrMuBGXPairDiff(3,1)

makeMuMAPlotCond2againstCond1 : The function creates two plots:
an MAplot of condy against condx and a normalised MAplot of condy
against condx using the mean p values. The function takes two para-
meters condx and condy. NOTE: TO RUN THIS FUNCTION YOU
MUST FIRST HAVE RUN THE FUNCTION createMuSummaryTable().
Example function call:

makeMuMAPlotCond2againstCond1(3,2)

addkhighestRankedPointsToMuM Aplot THIS function is meant to be
used after an MA plot has been produced using the function make-
MuMAPlotCond2againstCond1. It will (re)plot the points for the k
highest ranked genes in the existing MA plot. It takes five parameters:
condx and condy which specifies the conditions. 'ranking’ which must
be "ratio” or ”PPPD” and specifies the criterion on which the genes are
to be ranked: "ratio”=(E(diff)-loess)/SD(diff) or "PPPD”=posterior
probability of positive difference. 'K’ which specifies the number of
points the be plotted (e.g. for the k=10 highest ranked genes) and
‘colour’” which specifies the colour of the points to be added. Example
function calls are:

makeMuMAPlotCond2againstCond1(1,2)

addkhighestRankedPointsToMuMAplot(1,2,”ratio”,100,red)
addkhighestRankedPointsToMuMAplot(1,2,”ratio”,10,yellow)

plotCredibilityIntervalforDiff The function has five parameters: 'condx’,
‘condy’, ’size’, 'first’, 'last’ and 'ranking’. The function plots stacked
credibility intervals of the differences in expression between condition
‘condx’ and 'condy’ (with the loess curve subtracted) of genes ’first’ to
'last” when genes are ordered using 'ranking’. NOTE! TO RUN THIS
FUNCTION YOU MUST FIRST HAVE RUN THE FUNCTION cre-
ateMuSummaryTable(). The width of the credibility interval is given



by ’size’. Possible values are: 1, 2, 3, 4, 5, 6 and 7 corresponding to:
2.5-97.5, 5-95, 10-90, 15-85, 20-80, 25-75, 33-67%. Numbers of genes
with credibility intervals for difference in expression that do not cover
zero are denoted in the right hand margin in red. To find the gene
names look in the corresponding rows (row number: gene number+1)
in the geneNames.cvs table. Example function call which will plot the
credibility interval of size '3’ of the differences in expression between
condition 1 and 2 for the genes that are ranked as the 50 to 100 high-
est using the posterior probability of positive difference as a ranking
criterion.

plotCredibilityIntervalforDiff(1,2,3,50,100,” PPPD")

Example

library (affy)

mydata=Read Affy()
help1=c(3035,4090,4040,3732,4486,7176,4363,4818,9283,7298,4439,5096,6686 )
help2=c(5219,12212,9096,4794,3944,4925,9222.8847,5586,5317,193,7162,7061)
help3=c(3957,2998,4478,7481,22278,22279:22285,22225,22242 22248 22295)
spikeGeneNumbers=c(help1,help2 help3)
mygenes=c(seq(1,22300,by=100),spikeGeneNumbers)

source("R/bgx.R”)

bgx(mydata,genes=mygenes,samplesets=c(3,3))
source(”R/bgxPosteriorPlots.R”)
densityPlotsLogPMsandMMs(mydata,mygenes)
densityPlotsLogSandHandmu()

muMAplots()

muMAplotsAfterLoess()

createMuSummaryTable()

makePostDistrMuBGXindex(2)

makePostDistrMuBGXPairDiff(1,2)
addkhighestRankedPointsToMuMAplot(1,2,”ratio”,50,” blue” )
addkhighestRankedPointsToMuMAplot(1,2,”ratio” 40,”lightblue”)
addkhighestRankedPointsToMuMAplot(1,2,”ratio” ,30,” green”)
addkhighestRankedPointsToMuMAplot(1,2,”ratio”,20,” yellow” )
addkhighestRankedPointsToMuMAplot(1,2,”ratio”,10,”red”)



