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Abstract

Fuzzy multiple comparisons procedures are introduced as a solution to the

problem of multiple comparisons for discrete test statistics. The critical

function of the randomised p-values is proposed as a measure of evidence

against the null hypotheses. The classical concept of randomised tests is ex-

tended to multiple comparisons. This approach makes all theory of multiple

comparisons developed for continuously distributed statistics automatically

applicable to the discrete case. Examples of both Family Wise Error Rate

(Bonferroni, 1935) and False Discovery Rate (Benjamini & Hochberg, 1995)

procedures are discussed. An application to linkage disequilibrium testing

is given. Software for implementing the procedures is available.
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1 Introduction

The problem of dealing with multiple comparisons has long been recognised in

the statistical literature, starting with Bonferroni (1935, 1936). The Bonferroni

correction controls the Family Wise Error Rate (FWER), that is the probabil-

ity of committing any type 1 error in families of comparisons under simultaneous

consideration. Less conservative FWER procedures using the observed individual

p-values were introduced by Simes (1986), Hochberg (1988) and Rom (1990).

In more recent years, the lack of power of traditional multiple comparisons pro-

cedures motivated Benjamini & Hochberg (1995) to introduce a novel class of

procedures controlling the False Discovery Rate (FDR). The FDR control is less

restrictive than FWER control and admits more powerful procedures. Their pro-

cedure is referred to as the BH procedure in what follows. Benjamini & Yekutieli

(2001) studied the FDR procedures under dependency. An alternative approach

of FDR estimation was introduced in Storey (2002) and Storey et al. (2004).

The controlling procedures cited above were all developed for p-values arising from

continuous test statistics. Under appropriate conditions, each procedure will con-

trol either the FWER or the FDR at a level α. The proofs for such control use

the fact that the p-values have a uniform distribution under the null. For discrete
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distributions the level α may not be attainable even for a single test, as the p-

values do not come from a uniform distribution under the null. For multiple tests

of null hypotheses with different discrete distributions, this problem is exacerbated

since even when the desired level is attainable for one test it will not in general be

attainable for other tests. The procedures are more conservative, and therefore less

powerful. As an example consider a level α Bonferroni procedure for 2 independent

tests. Let pi be the maximum attainable p-value such that pi ≤ α/2 for the test

i, and p1 6= p2 due to different distributions. The attainable level p1 + p2 − p1p2 is

considerably less than α even for the minimum value of α = 2×max(p1, p2).

Multiple testing of discrete test statistics is particularly important currently, with

the development of novel genomics applications, such as genetics or microarray

experiments. Chakraborty et al. (1987) includes a typical genetics example of test-

ing for linkage disequilibrium, i.e. looking at correlation between alleles at pairs

of markers. In their example 28 correlation coefficients are calculated. Another

example is given in Gilbert (2005), where Fisher’s tests are used to identify the

positions at which the probability of a non-consensus amino-acid differs between

two sequence sets. Other applications include testing gene functional categories for

independence with respect to differential gene expression (eg. Al-Shahrour et al.,

2004), and association studies in genetics. Here again Fisher’s or chi-squared tests

are used.

To overcome inherent difficulties in working with discrete distributions, Tarone
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(1990) managed to reduce a number of comparisons by disregarding the hypothe-

ses which have no chance of achieving significance after the adjustment. Further

improved FWER procedures are given in Roth (1999). Benjamini & Yekutieli

(2001) considered a case of discrete test statistics and proved that the BH proce-

dure is then conservative. Gilbert (2005) developed an FDR procedure combining

the Tarone (1990) ideas with the BH type procedure.

We use a different approach to multiple comparisons procedures, based on the idea

of randomised tests (Cox & Hinkley, 1974). For one test, the test critical function

taking on values between 0 and 1 can be used as a fuzzy measure of evidence

against the null hypothesis. This quantity can be seen as a fuzzy membership

function for the set of rejected tests. (Note that this depends only on the observed

p-values and the level α of the test procedure. No randomisation is performed to

obtain the fuzzy measure.) The connection between test critical functions taking

on values between 0 and 1 and fuzzy quantities was discussed in Dollinger et al.

(1996) and applied recently to randomised tests and p-values by Geyer & Meeden

(2005).

The purpose of this paper is to show how this idea can be extended to the multiple

testing situation. Multiple tests are randomised independently, and the marginal

critical function for each test is used when constructing a multiple comparisons

procedure. We provide algorithms for the exact calculation of the fuzzy measures,

i.e. resulting probabilities of rejection of each test.
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In Section 2 we recap the notion of randomised or fuzzy p-values. Section 3 in-

troduces a conceptually simple level–α randomised Bonferroni procedure. Section

4 deals with the somewhat more complicated randomised BH procedure, and Sec-

tion 5 presents an application to linkage disequilibrium testing (using the data

from Chakraborty et al., 1987). Discussion is in Section 6.

An R (R Development Core Team, 2007) package implementing the fuzzy proce-

dures is available from http://www.bgx.org.uk/alex/.

2 Randomised p-values and fuzzy decision rules

Consider a discrete test statistic X, which can take values in {x1, x2, · · · , xn, · · · }.

If the observed value of the statistic is xi, the traditional (‘crisp’) p-value P for

a one-sided test is pi ≡ pr(X ≥ xi) calculated under the null hypothesis. Since

the set of possible values of X is discrete, the set of possible p-values is also dis-

crete. Under the null the crisp p-value has a discrete uniform distribution, i.e.

pr(P ≤ pi) = pi, as opposed to the continuous Unif(0, 1) distribution for p-values

of continuously distributed statistics. Thus in general the exact level-α test is not

possible to obtain.

This difficulty may be solved by the introduction of randomised statistical tests.

Consider a discrete null distribution of a test statistic X. Let c be the value of the
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statistic such that pr(X ≥ c) > α but pr(X > c) < α. Then the exact level-α test

can be achieved by using a randomised p-value P (c) = pr(X > c) + Upr(X = c)

for U ∼ Unif(0, 1) (Cox & Hinkley, 1974). Traditionally this was interpreted as a

need for an extra Bernoulli experiment with probability of rejection (α − pr(X >

c))/P (c) when X = c. An alternative interpretation is that the p-value is a random

variable, uniformly distributed between two discrete consecutive values. Uncon-

ditionally, this randomised p-value has a continuous Unif(0, 1) distribution under

the null.

In this work, we denote the crisp p-value for observation xi by pi ≡ pr(X ≥ xi).

The crisp p-value can be thought of as a function of the observed test statistic. We

will also need to know the previously attainable p-value, denoted by pi− ≡ pr(X >

xi) = pr(X ≥ xi+1), pi− < pi. With this notation, the randomised p-value is

Pi|xi ≡ pi− + U(pi− pi−) ∼ Unif(pi−, pi) conditionally on xi. Thus the conditional

probability of rejection of the randomised p-value pr(Pi ≤ α|xi) is

τ(pi) =

{ 0, α < pi−;

α−pi−
pi−pi−

, pi− ≤ α ≤ pi;

1, α > pi;

It is clear that τ(pi) depends only on the observed p-values and the level α.

The idea proposed by Geyer & Meeden (2005) is to use this function τ(pi) as a

fuzzy measure of evidence against the null hypothesis. We extend this to the mul-

tiple comparison situation by calculating the marginal probabilities of rejection

for randomised p-values when standard multiple testing procedures are used to

control the FWER and FDR. Since the randomised p-values have unconditionally
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a Unif(0, 1) distribution under the null, all properties of multiple comparison pro-

cedures for continuous test statistics are automatically fulfilled. This is the main

justification for our proposal to use randomised p-values in the multiple compar-

isons context. Multiple tests are randomised independently, i.e. conditionally ran-

dom variables Pi|xi, i = 1, · · · , m are independent by construction. Calculations

of rejection probabilities for the p-values in Sections 3 and 4 use this conditional

independence. This construction is sufficiently general not to be detrimental for

the properties of the resulting procedures as discussed in Section 6.

3 Fuzzy Bonferroni procedure

For continuous p-values, the Bonferroni procedure consists of rejecting each test

that has a p-value less than α/m, where m is the number of tests. Thus for the

fuzzy Bonferroni procedure we need to calculate pr(Pi ≤ α/m|xi). As each p-value

is compared with the same threshold, the probabilities of rejection are the same

as for a single test, with α replaced by α/m.

Definition 3.1. The fuzzy Bonferroni procedure is defined by the marginal critical

functions of the randomised tests:

τB(pi) =

{ 0, α/m < pi−;

α/m−pi−
pi−pi−

, pi− ≤ α/m ≤ pi;

1, α/m > pi;

Example 1. Fuzzy Bonferroni procedure on Binomial tests

Consider the results of 7 one-sided Binomial tests of H0 : p = 0.5 vs the 1-sided
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alternative p < 0.5. The tests reject for small values of Xi ∼ Bin(ni; 0.5), i =

1, · · · , 7. The 7 p-values are given in Table 1, and the support intervals (pi−, pi)

are plotted in Figure 1. The standard level–0.05 Bonferroni procedure compares

p-values to 0.05/7 = 0.00714. Only the smallest p-value is rejected in this case.

The fuzzy procedure has three more candidates for rejection, with probabilities

provided in the last column of Table 1. The data analyst would most likely con-

sider the 2nd test a candidate for further investigation, and possibly also the 3rd,

since these have reasonably large probabilities of rejection.

4 Controlling FDR for a discrete distribution

As before, we need to calculate the marginal probabilities of rejection for the

randomised p-values, this time using an FDR controlling procedure. We choose to

use the Benjamini and Hochberg (BH) procedure (Benjamini & Hochberg, 1995).

In the usual continuous case, the BH procedure consists of ordering the p-values,

then examining them in turn starting from the largest one. Each p-value i is

compared with rank(i)α/m. In general the hypotheses corresponding to the largest

p-values will be accepted. As soon as one hypothesis is rejected, all hypotheses with

smaller p-values are also rejected.

The calculation of the probabilities of rejection are more complex than for the

Bonferroni procedure, since now the ordering of the p-values must be taken into

account. If one imagines generating different sets of randomised p-values, it can
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be expected that the order of the randomised p-values will not always be the same

as the order of the observed p-values, and will vary from realisation to realisation.

For this reason, it will be useful to think about the support intervals (pi−, pi) of the

randomised p-values. The calculation of probabilities of rejection is much easier

when these support intervals do not overlap. This case is considered in Section

4.1. The case of overlapping intervals is presented in Section 4.2.

4.1 Ordered non-overlapping support intervals

In this section we consider the simplest case when the same test is performed m

times independently, and the sample sizes are the same. In this case the test

statistics have exactly the same discrete null distribution. Therefore the support

intervals (pi−, pi] do not overlap. If there are many tests, it is likely that there will

be several observed p-values which are equal. These will have the same probability

of rejection. Thus the calculation of the probabilities can be done for each unique

support interval (j = 1, ..., J), rather than for each p-value (i = 1, ..., m), as the

number of intervals J can be considerably smaller than m. We denote the proba-

bility of rejection for p-values in interval j by πj. Then the probability of rejection

for test i is τBH(pi) = πj where j is the index of the interval to which randomised

p-value i belongs.

In a similar manner to the continuous BH procedure, we examine each support

interval in turn, starting with the interval corresponding to the largest observed p-
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value. In general the intervals of the largest p-values will be accepted. Then there

will be some so-called fuzzy intervals, which are rejected with some probability

0 < πj < 1 for interval j. As soon as one interval is fuzzily rejected, all preceding

intervals are fuzzily rejected, until an interval is crisply rejected (πj = 1). Then all

preceding intervals are also crisply rejected.

First we must decide which intervals are fuzzy. Suppose that there are l observed

p-values with the value pj (a tie of length l). Thus the support interval (pj−, pj]

will always contain l randomised p-values (each uniformly distributed on that

interval). Their ranks increase from Rj− for the smallest to Rj+ for the largest. In

the BH procedure, the largest rank Rj+ defines the decision rule. Suppose, without

loss of generality, that all hypotheses corresponding to p-values larger than pj are

accepted. Then there are 3 possibilities:

• pj ≤ Rj+

m
α ; All randomised p-values are less than α

m
multiplied by their

respective rank with probability 1, therefore the tie is crisply rejected, i.e.

the probability of rejection is πj = 1;

• pj− <
Rj+

m
α < pj ; The probability of the randomised p-values being less

than α
m

multiplied by their respective rank is between 0 and 1, thus the tie

is fuzzily rejected, 0 < πj < 1;

• Rj+

m
α ≤ pj− ; All randomised p-values are greater than α

m
multiplied by their

respective rank with probability 1, thus the tie is accepted, i.e. πj = 0.

Let us look at the fuzzy rejection case in more detail. Consider a particular realisa-
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tion of the randomised p-values (of course to calculate the probabilities of rejection

we must integrate over all possible realisations). Each realisation of the ordered

randomised p-values must be compared with α1 =
Rj−
m

α, · · · , αl =
Rj+

m
α. Denote

a probability of exactly k randomised p-values rejected out of l by Tk,l(pj−, pj),

0 ≤ k ≤ l. Let also qk = max(0,
αk−pj−
|pj−pj−|) for k = 1, · · · , l. Then

Tk,l(pj−, pj) = P{U(k) < αk, U(k+1) > αk+1, · · · , U(l) > αl} (1)

=
l!

k!
qk
k

∫ 1

qk+1

duk+1

∫ 1

max(uk+1,qk+2)

duk+2 · · ·
∫ 1

max(ul−1,ql)

dul

where U(i) are the order statistics from Unif(0, 1). Appendix A gives the details of

this calculation. Given k rejections, the probability that a particular hypothesis

is rejected is
(

l−1
k−1

)
/
(

l
k

)
= k/l. The unconditional probability that any hypothesis

out of the l is rejected is the expected proportion of rejections, i.e.

πj = l−1

l∑

k=1

kTk,l(pj−, pj).

We stress that this probability is the exact unconditional probability of rejection

for the randomised test. It does not depend on drawing any realisations of ran-

domised p-values.

Next consider decisions about the p-values in previous intervals in each of the 3

above cases.

• If the interval (pj−, pj] is crisply rejected, all the preceding intervals (those

corresponding to smaller p-values) are also crisply rejected. This is due to

the aspect of the BH procedure which says that once one p-value is rejected,

all smaller ones are also rejected.
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• If (pj−, pj] is a fuzzy interval there are 2 sub-cases to consider.

– With probability T0l(pj−, pj) no hypotheses in (pj−, pj] are rejected, so

the preceding interval may be accepted or be crisply/fuzzily rejected on

its own merit.

– With probability 1 − T0l(pj−, pj) at least one hypothesis in (pj−, pj] is

rejected, in which case the preceding interval is crisply rejected.

Therefore the probability of rejection for the preceding interval is πprec
j =

(1− T0l(pj−, pj)) + T0l(pj−, pj)l
−1

∑l
k=1 kTk,l(p

prec
j− , pprec

j ) and the probability

of no rejections in the preceding interval is T0l(pj−, pj)T0l(p
prec
j− , pprec

j ).

• When the interval (pj−, pj] is accepted, the previous interval is accepted or

crisply/fuzzily rejected on its own merit.

Definition 4.1. Fuzzy BH procedure for ordered non- overlapping sup-

port intervals. Let m ordered p-values have J ≤ m unique values p1, · · · , pJ ,

with ties of length lj, j = 1, · · · , J ,
∑

lj = m. Let each corresponding randomised

p-value be uniformly distributed on a support interval Ij = I(pj) = (pj−, pj],

where the intervals Ij, j = 1, · · · , J are non-overlapping and are ordered by value

of pj. Let the ranks of the p-values in the j-th tie be from Rj− =
∑

t<j lt + 1 to

Rj+ =
∑

t≤j lt.

Define sf = max{j : pj− ≤ Rj+

m
α} and sc = max{j : pj ≤ Rj+

m
α}, sc ≤ sf .

Then all p-values in the interval Dreject = ∪{Ij, j ≤ sc} are crisply rejected and all

p-values in the interval Daccept = ∪{Ij, j > sf} are accepted. The fuzzy interval

is defined as F = {Ij, sc < j ≤ sf}.
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Let πj denote the unconditional probability of rejecting the p-values in interval

j (see Algorithm 1 for calculation). Then τi for p-value i is equal to πj where j is

the label of the interval corresponding to p-value i.

Algorithm 1. Calculation of rejection probabilities in each interval.

Let interval j be (pj1, pj2]. (For the non-overlapping intervals case pj1, pj2 =

pj−, pj.) Let πj denote the unconditional probability of rejecting the randomised

p-values in interval j, and ηj be the probability of no p-values in interval j being

rejected.

• For j = J, J − 1, ..., sf + 1,

πj = 0, ηj = 1

• For j = sf , sf − 1, ..., sc + 1,

πj = (1− ηj+1) + ηj+1l
−1

∑l
k=1 kTk,lj(pj1, pj2)

ηj = ηj+1T0,lj(pj1, pj2)

• For j = sc, ..., 1,

πj = 1

Exact calculation of the Tk,lj(pj1, pj2) is given in the Appendix.

Lemma 4.1. For independent test statistics, and for m0 ≤ m true null hypotheses,

the above randomised BH procedure controls FDR at exactly level m0

m
α.

Proof. This is part of theorem 5.1 from Benjamini & Yekutieli (2001), appli-

cable to any continuous test statistics. Any m-tuple of randomised p-values have

the continuous uniform distribution, and theorem 5.1 holds. Since the intervals Ij
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are ordered, the p-values outside of the ‘fuzzy subset’ F = {Isc + 1, · · · , Isf
} are

rejected or accepted regardless of their generated values. The FDR is exactly m0

m
α,

conditional on any generated realisation within the fuzzy subset F . The proof

follows by integrating over all possible realisations.

Note that any other result for BH-type or similar multiple comparisons procedures

proven for the continuous case is applicable to the case of ordered support intervals

in exactly the same way as was shown above.

Example 2. Fuzzy BH procedure for the same discrete distribution.

Consider m = 10 one-sided sign tests for n = 8 subjects, Si ∼ Bin(8, .5). Set the

FDR level α = 0.05.

The p-values are 0.004, 0.035× 3, 0.145× 2, 0.363× 4.

For p = p2 the interval I2 = (p2−, p2] = (0.004, 0.035] contains l = 3 p-values,

R2−
m

α = 0.01 and R2+

m
α = 0.02. Therefore sc = 1 and sf = 2.

The qk values defined before equation 1 are .194, .355, .516 respectively. We

obtain

T1,3(p2) = 6q1(q3 − q2)(1− q3) + 3q1(1− q3)
2 = .227,

T2,3(p2) = 3q2
2(1− q3) = .183,

T3,3(p2) = q3
3 = .137.

For each of the three hypotheses with p-value of 0.035 the probability of rejec-

tion is π2 = π(.035) = 3−1
∑

kTk,3(p2) = .335 and the probability of rejecting at

least one of the three hypotheses is 1− T0,3(.035) = .547. The p-value p1 = 0.004

is crisply rejected.
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4.2 General case.

Consider now what happens with randomised p-values {Pi, i = 1, · · · ,m} originat-

ing from different distributions. Now the support intervals may overlap, so there is

no strict ordering between them. We first partition the unit interval into intervals

based on the intersections of the support intervals (so these smaller intervals are

non-overlapping). For each realisation of m randomised p-values, we can think

of allocating these p-values to the non-overlapping intervals. Given a particular

allocation, the calculation of πj for interval j can proceed as in Section 4.1. In

order to calculate the τBH(pi) for each test i, we must integrate over the possible

allocations of randomised p-values. We stress again that the value of τBH(pi) does

not depend on any particular realisation of randomised p-values, but only on the

observed discrete p-values.

Definition 4.2. Fuzzy BH procedure in the general case of overlapping

support intervals.

Let each randomised p-value have support in the interval Ii. Partition the sup-

port set I =
⋃

Ii, i = 1, · · · ,m into J ≤ 2m ordered subintervals I =
⋃

Dj, j =

1, · · · , J , where Dj = (Dj−, Dj+]. Let the probability of randomised p-value Pi

belonging to interval Dj be denoted φij = |Dj ∩ Ii|/|Ii|.

Let A = {Ad, d = 1, · · · , ∆} be the set of all possible allocations of all m

p-values to the intervals Dj. Denote by zd
i the label j of the interval to which

randomised p-value i is allocated in allocation d.

For each subinterval Dj, j = 1, · · · , J denote the maximum and the minimum
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possible ranks across all allocations Ad by Rj+ and Rj−. Define sf = max{j :

Dj− ≤ Rj+

m
α} and sc = max{j : Dj+ ≤ Rj−

m
α}, sc ≤ sf . Then all p-values in the

interval Dreject = ∪{Dj, j ≤ sc} are crisply rejected; all p-values in the interval

Daccept = ∪{Dj, j > sf} are accepted; only p-values which can be allocated to the

‘fuzzy subset’ F = {Dj, sc < j ≤ sf} should be investigated further.

For each allocation Ad, the rejection probabilities for each interval πd
j are cal-

culated using Algorithm 1. Then τi for p-value i is

τBH(pi) =
∆∑

d=1

pr(Ad)π
d
zd
i
.

where the probability of an allocation Ad is pr(Ad) =
∏

i φi,zd
i
.

Since we do not need to distinguish between different allocations in subintervals

of Daccept and Dreject, the number of allocations to be considered can be greatly

reduced by treating Daccept and Dreject as one of the subintervals, see Example 3

below.

Lemma 4.2. For independent test statistics, and for m0 ≤ m true null hypotheses,

the above randomised BH procedure controls FDR at exactly level m0

m
α.

Proof. For any given allocation Ad, the result holds as for Lemma 4.1, with

the intervals Ij replaced by Dj. The proof follows by integrating over all possible

allocations.

Example 3. Fuzzy BH procedure

Consider the 7 p-values from a mixture of Binomial distributions, given in Table

1. The support set I = [0, 0.145] is partitioned into the 8 subintervals Dj, j =
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1, ..., 8 given in Table 2 and plotted in Figure 1. Here sc = 4, sf = 6. Denote

Aj± = Rj±α/7. The first 4 intervals have Dj+ < Aj− and therefore constitute

Dreject; intervals 7 and 8 constitute Daccept; intervals 5 and 6 are the fuzzy subset

F . Note that though D5+ < A5+ this is not sufficient for crisp rejection of D5 as

we shall see below. P-values which may end up in the fuzzy subset are p-values 4

to 7. Each can belong to 3 different subintervals, therefore 34 = 81 allocations are

possible.

Since we do not need to distinguish between different allocations in intervals be-

fore 5 and after 6, this number is reduced to 36 = 22 × 32: the p-value 4 may

belong to D5 or to Dreject ; p-value 7 may belong to D6, or to Daccept. Alloca-

tions of the first three p-values do not change the ranks of the last four p-values

within F , and are therefore ignored. Given an allocation Ad, any p-values al-

located to D6 will be fuzzily rejected with probability π6|Ad. When R5+ > 4,

which happens every time two or three p-values belong to D5, we have D5+ < A5+

and sc = 5. Thus every p-value in D5 will be crisply rejected, π5 = 1. When

there is only one p-value with rank 4 in D5, it is fuzzily rejected with prob-

ability π5 = 1 − T0,l6(D6) + T0,l6(D6)
∑l

k=1 kTk,l5(D5). Of course this happens

only when p-value 4 on its own belongs to D5, with p-value 5 in D6, and p-

values 6 and 7 in D6 or Daccept; this occurs in 4 possible allocations with l6

varying from 1 to 3. Summing up the probabilities of rejection for each p-value

we obtain τBH(P1) = τBH(P2) = τBH(P3) = 1, τBH(P4) = 0.941, τBH(P5) =

0.632, τBH(P6) = 0.281, τBH(P7) = 0.080. The standard BH procedure rejects
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the first three p-values. Note the very high probability of rejection for the p-value

4; p-value 7 has a low probability of rejection, it can be rejected only if it is allo-

cated to D6.

5 Application: testing for linkage disequilibrium

In this section we demonstrate our procedure on a data set used to test linkage

disequilibrium (LD), that is the association between alleles at different markers

on the same chromosome. Genotype data consist of pairs of alleles at each locus,

with no information about which chromosome each allele comes from. Haplotype

data include the chromosome information. For example, for a pair of markers,

each with two possible alleles (A,a for the first marker and B,b for the second), the

possible haplotypes are (A,B), (A,b), (a,B) and (a,b). A pair of markers is in LD

in a population if the alleles found at the two markers on the same chromosome

are associated in that population.

Linkage disequilibrium data can be presented in the form of 2x2 contingency

tables where haplotypes are classified in terms of their alleles at each of the 2 loci of

interest. It is usual to use the hypergeometric distribution (as used in the Fisher’s

exact test) for testing independence between the loci, as there are many tables

with low cell counts and thus the approximation used in the chi-squared test is not

valid.

The hypergeometric distribution, unlike the chi-squared distribution, can be
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used to find significant positive and negative correlations separately. Thus 2-sided

tests are used when both positive and negative correlations are of interest. How-

ever, there is ongoing controversy about how 2-sided p-values should be constructed

for the hypergeometric distribution (Agresti, 2002). Besides, the randomised p-

values constructed from 2-sided p-values will not in general be uniform, interfering

with our main purpose.

We propose a choice of p-value which does ensure uniformity for the randomised

p-values: 1-sided p-values conditioned on the sign of the correlation (Kulinskaya,

2007). These are given by

pi ≡





pr(X≥xi)
pr(X≥xmode)

, r ≥ 0;

pr(X≤xi)
pr(X≤xmode)

, r < 0;

where X is the random variable for one of the cells in the contingency table and

follows a hypergeometric distribution conditional on the margins of the table. The

quantity xmode is the value of X corresponding to the most probable table under

the null, and r is the correlation coefficient (or equivalently the determinant of

the 2x2 contingency table). The randomised p-values based on observed p-values

constructed as above are Unif(0, 1) under the null.

Often the 1-sided conditional p-values are equal to the usual 2-sided p-values.

This happens in two situations. The first case is when the null distribution for a

particular table is so skewed that xmode is at one end of the possible range of X (for

example if xmode is the minimum possible value for X and so pr(X ≥ xmode) = 1).

The second case is when the null distribution is symmetric (in this case pr(X ≥

xmode) = 0.5, so pi is twice the usual unconditional 1-sided p-value).
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Chakraborty et al. (1987) looked at the relationship between the disease phenylke-

tonuria (PKU) and 8 markers at the human phenylalanine hydroxylase (PAH) lo-

cus. As part of this investigation they tested for LD between the markers. For

this purpose, haplotypes were divided into cases (with a mutant allele at the PKU

locus) and controls (normal allele), since the marker allele frequencies were sig-

nificantly different for cases and controls. There were 66 case and 66 control

haplotypes. Correlation coefficients were calculated for all pairs of markers, 28

in all, and tested for difference from zero (presumably using the chi-squared test,

though this is not stated). No multiple testing correction was performed.

Table 3 shows the 1-sided conditional p-values for the controls haplotypes for

each pair of markers in the Chakraborty et al. (1987) data set. The markers are

given in the table in the same order as they appear on the chromosome, in a similar

format as presented in the original paper. As in the original work, the markers

which are closest together have the smallest p-values, except for the pairs involving

the marker HindIII.

Table 4 shows the fuzzy measures τ of evidence against the null of no correlation

for each marker pair, using the randomised Benjamini and Hochberg method for

controlling FDR at a level of α = 0.01. The pairs with τ = 1 here (that is, strong

evidence against the null) would also have their null hypotheses rejected in the

usual non-fuzzy method. All other null hypotheses would not be rejected, i.e. they

would be declared to have no evidence against the null. With our analysis we can

show that for the marker PvuII(b), there is evidence for LD with other markers.
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6 Discussion

Fuzzy multiple comparisons procedures are rather attractive from several different

perspectives. Firstly, they extend the classical concept of randomised tests to mul-

tiple comparisons. This seems to be a very straightforward generalisation, but to

our knowledge it has not been suggested before. This approach makes all theory

of multiple comparisons developed for continuously distributed statistics automat-

ically applicable to the discrete case. Only two methods: Bonferroni (1935) and

Benjamini & Hochberg (1995) were explored in this paper, but it should be possible

to similarly generalize other methods, Storey et al. (2004) among others. Secondly,

a fuzzy decision procedure ascribing probabilities to rejection of each of multiple

hypotheses should appeal to applied scientists given that fuzzy methods are rather

popular in contemporary computer-intensive applications, see, for example, Ross

(2004).

An evident drawback is the amount of computation required. These procedures

should be efficiently programmed if they are to be of practical use. If there are ties

in the observed p-values in the general (overlapping intervals) case, the order of

computation can be further reduced since we do not have to separately calculate

all the different possible allocations of several copies of the same observed p-value

(details available on request). Another possibility would be to generate N sets of

m p-values from
∏m

i=1 Unif(Ii), and to estimate probabilities of rejection τi through

proportions of rejection out of N .
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FDR control at exact m0

m
α level requires independence of the p-values. But it is

worth noting that the calculation of rejection probabilities τ(pi) in Sections 3 and

4 holds regardless, due to conditional independence of the randomised p-values. As

long as the properties of positive regression dependence (PRDS) from Benjamini

& Yekutieli (2001) between components of the marginally uniform multivariate

distribution of the p-values on [0, 1]m are satisfied, the randomised BH procedure

is conservative.

A critical feature of the procedures introduced in this paper is the conditional in-

dependence of the randomised p-values Pi|xi, i = 1, · · · , m. During the revision

stage we found out that this construction is equivalent to a well known technique

of embedding a multivariate discrete distribution in a continuous one, termed the

standard extension copula by Schweizer & Sklar (1974). Nešlehová (2007) shows

that this construction of a continuous joint distribution on [0, 1]m with uniform

marginals captures the monotonic dependence between the original random vari-

ables. Since the PRDS property of the copula distribution is invariant under

comonotone transformations (Benjamini & Yekutieli, 2001, p.1170), we conjecture

that it is inherited from the original monotonic dependence between the discrete

random variables. Thus our procedure should be general enough not to be unduly

conservative. The conjecture requires further work.

The theory in this paper applies directly only to one-sided p-values or p-values

from symmetric distributions. Treatment of p-values for two-sided tests with non-
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symmetric distributions is somewhat more technically involved, see Geyer & Mee-

den (2005), and is not discussed. Instead we used conditional 1-sided p-values in

Section 5, see Kulinskaya (2007).

Interpretation of results of fuzzy multiple comparisons procedures is not straight-

forward. If a binary decision is required, a simple rule could be adopted, say reject

all p-values with probability of rejection above 50%; this would change the FDR

level though. We believe that actual probabilities of rejection provide more infor-

mation, and applied scientists may decide by themselves which hypotheses require

further exploration.
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Appendix: Calculation of Tk,l

When we examine an interval Dj in the fuzzy subset F (where Dj = Ij in the non-

overlapping case), we need to calculate two quantities, firstly the unconditional

probability πj that a particular hypothesis is rejected, and secondly the probability

ηj that no hypotheses in the interval are rejected. Both of these can be calculated

from the probabilities Tk,lj(p1, p2) (of rejecting exactly k of the hypotheses, for

k = 1, ..., lj). Here p1, p2 are the boundaries of the interval Dj, (pj−, pj in the

non-overlapping case).
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Let the number of randomised p-values in the interval be lj, and the minimum

and maximum ranks be Rj− and Rj+ respectively. For k = 1, ..., lj, let αjk =

(Rj−+k−1)α/m, qjk = max(0, (αjk−p1)/(p2−p1)) and tj = qj(k+1)−qjk = α/m|Dj|

is independent of k. From now on we suppress the j index on the tie length lj.

We need to calculate

Tk,l(p1, p2) ≡ P{Pjk < αjk, Pj(k+1) > αj(k+1), ..., Pjl > αjl}

=
l!

k!
qk
jkP{Pj(k+1) > αj(k+1), ..., Pjl > αjl} (2)

where Pjk, i = 1, ..., l are order statistics from a Uniform on (p1, p2).

In order to calculate the probability in Equation 2, the {Pj(k+1), ..., Pjl} have

to be allocated into the intervals defined by {αj(k+1), ..., αjl, p2} in such a way that

the condition in the probability holds. Given such an allocation, the probability is

easy to calculate: it is a product of two types of terms:

P{αjr < Pj(s+1) < ... < Pj(s+u) < αj(r+1)} =
tuj
u!

P{Pjl > ... > Pj(l−r+1) > αjl} =
(1− qjl)

r

r!

(either u p-values allocated between two adjacent α’s or the largest r p-values

allocated to the top interval (αjl, p2)).

The allocations can be labelled uniquely by l−k integers, denoting the number

of randomised p-values in the above alpha intervals, eg. α1 < P1 < α2 < α3 <

P2 < P3 is denoted 102 (l = 3, k = 0). If we call these integers nk+1, ..., nl, the

probability we need for equation 2 can be written

Tk,l(p1, p2) =
l!

k!
qk
jk

∑

Z(l−k)
d

t
l−k−n

(d)
l

j (1− qjl)
n

(d)
l

∏l
i=k+1 n

(d)
i !
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where Z(l−k)
d stands for one of the allocations allowed for l−k intervals. Note that

the allocation labels depend only on l − k, not j, so can be calculated just once

for each l − k.

The allocations can be calculated in a straightforward way:

for n1 = 0, 1 {

for n2 = 0, ..., 2− n1 {

for n3 = 0, ..., 3− n1 − n2 {

...

for n(l−k)−1 = 0, ..., (l − k)− 1−∑(l−k)−2
1 nj {

n(l−k) = (l − k)−∑(l−k)−1
1 nj

allocation Z l−k
d = {n1, n2, ..., nl−k}.

},...}

We must have
∑r

i=1 ni ≤ r for each r, since the first r intervals may not contain

more than r p-values if the condition in equation 2 is to be satisfied.

References

Agresti, A. (2002). Categorical Data Analysis. New York: John Wiley and Sons

Ltd, 2nd ed.

Al-Shahrour, F., Daz-Uriarte, R. & Dopazo, J. (2004). Fatigo: a web tool

for finding significant associations of gene ontology terms with groups of genes.

Bioinformatics 20 578–580.

Benjamini, Y. & Hochberg, Y. (1995). Controlling the False Discovery Rate:

25



a practical and powerful approach to multiple testing. J. R. Statist. Soc. B 57

289–300.

Benjamini, Y. & Yekutieli, D. (2001). The control of the False Discovery Rate

in multiple testing under dependency. The Annals of Statistics 29 1165–1188.

Bonferroni, C. E. (1935). Il calcolo delle assicurazioni su gruppi di teste. In

Studi in Onore del Professore Salvatore Ortu Carboni. Rome: Italy, 13–60.

Bonferroni, C. E. (1936). Teoria statistica delle classi e calcolo delle probabilità.
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ni ki pi pi− pi − pi− τB(pi)

8 0 0.003906 0 0.003906 1

10 1 0.010742 0.000977 0.009766 0.631429

6 0 0.015625 0 0.015625 0.457143

8 1 0.035156 0.003906 0.03125 0.103571

10 2 0.054688 0.010742 0.043945 0

6 1 0.109375 0.015625 0.09375 0

8 2 0.144531 0.035156 0.109375 0

Table 1: Fuzzy Bonferroni procedure example. pi = pr(Xi ≤ ki) is a p-value from a

1-sided binomial test, Xi ∼ Bin(ni; 0.5) under the null; pi− is the previous attainable p-value,

τB(pi) is the probability of rejection by the fuzzy Bonferroni procedure.
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j Dj− Dj+ |Dj| p-values Rj− Rj+ Aj− Aj+

1 0.000 0.001 0.001 1,3 1 2 0.007 0.014

2 0.001 0.004 0.003 1,2,3 1 3 0.007 0.021

3 0.004 0.011 0.007 2,3,4 2 4 0.014 0.029

4 0.011 0.016 0.005 3,4,5 3 5 0.021 0.036

5 0.016 0.035 0.020 4,5,6 4 6 0.029 0.043

6 0.035 0.055 0.020 5,6,7 5 7 0.036 0.05

7 0.055 0.109 0.055 6,7 6 7 0.043 0.05

8 0.109 0.145 0.035 7 7 7 0.050 0.05

Table 2: Fuzzy BH procedure example (overlapping support intervals). See data in

Table 1. j is the number of an interval Dj = (Dj−, Dj+], |Dj | is its length; ‘p-values’ provides

the list of p-values which can belong to Dj , Rj− and Rj+ are the smallest and the largest ranks

in Dj , Aj± = Rj±α/7
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BglI PvuII(a) PvuII(b) EcoRI MspI XmnI HindIII

PvuII(a) 5× 10−15 - - - - - -

PvuII(b) 1× 10−5 1× 10−5 - - - - -

EcoRI 2× 10−4 2× 10−4 3× 10−2 - - - -

MspI 1 1 2× 10−2 2× 10−10 - - -

XmnI 1 1 2× 10−2 2× 10−2 3× 10−19 - -

HindIII 7× 10−4 7× 10−4 7× 10−2 1× 10−3 3× 10−7 3× 10−7 -

EcoRV 1 1 1× 10−2 5× 10−7 5× 10−3 5× 10−3 1× 10−10

Table 3: The 1-sided p-values conditional on the sign of the correlation coefficient,

for the linkage disequilibrium data set from Chakraborty et al. (1987) Chakraborty

et al. (1987). The markers are listed in the order they appear on the chromosome.
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BglI PvuII(a) PvuII(b) EcoRI MspI XmnI HindIII

PvuII(a) 1 - - - - - -

PvuII(b) 1 1 - - - - -

EcoRI 1 1 0.21 - - - -

MspI 0 0 0.39 1 - - -

XmnI 0 0 0.39 1 1 - -

HindIII 1 1 0.10 1 1 1 -

EcoRV 0 0 0.62 1 1 1 1

Table 4: Results for the linkage disequilibrium (LD) data set from Chakraborty

et al. (1987). The values given are τ , the fuzzy measure of evidence against the

null hypothesis of no LD, for the Benjamini and Hochberg FDR method at level

α = 0.01. The markers are listed in the order they appear on the chromosome.
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Figure 1: Plot of p-values and related intersecting support intervals for the data

from Example 4, given in Table 2. Support intervals (horizontal segments) are

ordered by the ranks of respective p-values on the vertical axis. The support set

I = [0, 0.145] is split by vertical dashed lines into 8 subintervals Dj, j = 1, · · · , 8

on the horizontal axis.
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