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Introduction to 
microarrays

• Challenge: Identify function of all genes 
in genome

• DNA microarrays allow study of 
thousands of genes simultaneously

Post-genome Genetics Research

DNA -> mRNA -> protein

Gene Expression

Pictures from http://www.emc.maricopa.edu/faculty/farabee/BIOBK/BioBookTOC.html

Hybridisation

• Known sequences of single-stranded DNA 
immobilised on microarray

• Tissue sample (with unknown concentration of RNA) 
fluorescently labelled

• Sample hybridised to array

• Excess sample washed off array

• Array scanned to measure amount of RNA present for 
each sequence on array 

DNA TGCT

RNA ACGA
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The Principle of Hybridisation

20µm

Millions of copies of a specific
oligonucleotide sequence element

Image of Hybridised Array

Approx. ½ million different
complementary oligonucleotides

Single stranded, 
labeled RNA sample
Oligonucleotide element

* *
*

*
*

1.28cm

Hybridised Spot

Slide courtesy of Affymetrix

Expressed genes

Non-expressed genes

Zoom Image of Hybridised Array

Output of Microarray

• Each gene is represented by several different DNA 
sequences (probes)

• Obtain intensity for each probe

• Different tissue samples on different arrays so 
compare gene expression for different experimental 
conditions 

Differential 
Expression

AL, Sylvia Richardson, 
Clare Marshall, Anne 
Glazier, Tim Aitman

Low-level Model
(how gene expression is estimated from signal)

Normalisation
(to make arrays comparable)

Differential 
Expression

Clustering
Partition Model

Microarray analysis is a
multi-step process

We aim to integrate all 
the steps in a common
statistical framework
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• Model different sources of variability simultaneously,
within array, between array …

• Share information in appropriate ways to get better 
estimates, e.g. estimation of gene specific variability. 

• Uncertainty propagated from data to parameter 
estimates.

• Incorporate prior information into the model.

Bayesian hierarchical model 
framework
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Data Set and Biological question

Previous Work (Tim Aitman, Anne Marie Glazier)

The spontaneously hypertensive rat (SHR): A model of 
human insulin resistance syndromes.

Deficiency in gene Cd36 found to be associated with 
insulin resistance in SHR (spontaneously 
hypertensive rat)

Differential Expression 3 of 18
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Data Set and Biological question

Microarray Data

3 SHR compared with 3 transgenic rats
3 wildtype (normal) mice compared with 3 mice with 

Cd36 knocked out
≅ 12000 genes on each array

Biological Question

Find genes which are expressed differently in wildtype
and knockout mice.
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Condition 1 (3 replicates)

Condition  2 (3 replicates)

Needs 
‘normalisation’ 

Spline curves 
shown

Data
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Model for Differential Expression

• Expression-level-dependent normalisation

• Only 3 replicates per gene, so share information 
between genes to estimate gene variances

• To select interesting genes, use posterior distribution 
of ranks
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Data: ygr = log gene expression for gene g, replicate r
αg = gene effect
βr(g) = array effect (expression-level dependent)
σg

2 = gene variance

• 1st level
ygr ∼ N(αg + βr(g) , σg

2),  Σr βr(g) = 0
βr(g) = function of αg , parameters {a} and {b} 

Bayesian hierarchical model for genes
under one condition
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• 2nd level
Priors for αg , coefficients {a} and {b}

σg
2  ∼ lognormal (µ, τ)

Hyper-parameters µ and τ can be influential.
In a full Bayesian analysis, these are not fixed

• 3rd level
µ ∼ N( c, d)       τ ∼ lognormal (e, f)

Bayesian hierarchical model for genes
under one condition
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Details of array effects

• Piecewise polynomial with unknown break points:
βr(g) = quadratic in αg for  ark-1 ≤ αg ≤ ark

with coeff (brk
(1), brk

(2) ),  k =1, … #breakpoints

• Locations of break points not fixed

• Must do sensitivity checks on # break points

• Cubic fits well for this data

Differential Expression 9 of 18
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Non linear fit of array effect as a function 
of gene effect

loess
cubic
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Before (ygr)

After (ygr- βr(g) )

Wildtype Knockout

Effect of normalisation on density

^
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•Variances are 
estimated using 
information from all 
G x R 
measurements 
(~12000 x 3) rather 
than just 3 

•Variances are 
stabilised and 
shrunk towards 
average variance

Smoothing of the gene specific variances

Differential Expression 12 of 18

• Check our assumption of different variance for each gene

Bayesian Model Checking

• Predict sample variance Sg
2 new  from the model for 

each gene
• Compare predicted Sg

2 new with observed Sg
2 obs

Bayesian p-value Prob( Sg
2 new  >  Sg

2 obs )

• Distribution of p-values Uniform if model is adequate
• Easily implemented in MCMC algorithm

Differential Expression 13 of 18

Bayesian predictive p-values

Exchangeable variance model is 
supported by the data

Control for method: equal 
variance model has too little 
variability for the data
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Differential expression model

dg = differential effect for gene g between 2 
conditions

Joint model for the 2 conditions :
yg1r ∼ N(αg - ½ dg + βr(g)1 , σg1

2),  (condition 1)
yg2r ∼ N(αg + ½ dg + βr(g)2 , σg2

2),  (condition 2)

Prior can be put on dg directly

Differential Expression 15 of 18
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Possible Statistics for Differential 
Expression

dg  ≈ log fold change
dg

* = dg / (σ2
g1 / 3 + σ2

g2 / 3 )½ (standardised 
difference)

•We obtain the joint distribution of all {dg} and/or {dg
* }

•Distributions of ranks

Differential Expression 16 of 18

Credibility intervals for ranks

Differential Expression 17 of 18

Low rank, high 
uncertainty

Low rank, low 
uncertainty

150 genes with lowest 
rank (most under-
expressed)

Probability statements about ranks

Under-expression: 
probability that gene is 
ranked in bottom 100 genes

Have to choose rank cutoff
(here 100)

Have to choose how 
confident we want to be in 
saying the rank is less than 
the cutoff (eg prob=80%)

Differential Expression 18 of 18

Summary: Differential Expression

• Expression-level-dependent normalisation

• Only 3 replicates per gene, so share information 
between genes to estimate gene variances

• To select interesting genes, use posterior distribution 
of ranks

Bayesian estimation of 
False Discovery Rate

Philippe Broët, AL, Sylvia 
Richardson 

• Testing thousands of hypotheses 
simultaneously

• Traditional methods (Bonferroni) too 
conservative

• Challenge: select interesting genes without 
including too many false positives.

Multiple Testing

FDR 1 of 17
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False Discovery Rate

FDR 2 of 17 

FDR=E(V/R)

Declare 
negative

Declare 
positive

True 
negative

True 
positive ST

VU

N-R R

m0

m1

N

FWER=P(V>0)
Storey showed that

FDR as a Bayesian Quantity
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Storey starts from p-values.

We directly estimate posterior probabilities.

E(V/R | R>0) = P(truly negative | declare positive)

Storey Estimate of P(null)

P-values are Uniform if 
all genes obey the null 
hypothesis

Estimate P(null) where 
density of p-values is 
approximately flat 

FDR 4 of 17

Storey Estimate of FDR

Lists based on ranking genes

List i is all genes with p-value pg <= pi
cut

For list i, P( declare positive | truly negative ) = pi
cut

FDRi = P( truly - ) P( declare + | truly - ) / P( declare + ) 

= P(null) pi
cut N/Ni

FDR 5 of 17

Bayesian Estimate of FDR

• Classify genes as under-expressed, …, unaffected, 
…, over-expressed  (may be several different levels 
of over and under-expression)

• ‘unaffected’ <-> null hypothesis

• FDR = mean P(gene belonging to null) for genes 
declared positive

FDR 6 of 17 

• Normal mixture model: ‘null’ component = 
‘unaffected’, several other components model the 
alternatives

• Number of states is unknown (estimated in model)

• Variable number of components -> semi-parametric 
model of alternative.

Mixture Model

FDR 7 of 17 
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Bayesian mixture model

Mixture model specification

dg ~ w0 N(0, σ0
2) + Σj=1:k wj N(µj, σ j

2)

µj
+  > 0 , ordered, uniform on upper range

µj
- < 0 , ordered, uniform on lower range

k, unknown number of components -> alternative is 
modelled semi-parametrically

µj

FDR 8 of 17 

NULL ALTERNATIVE

Latent variable zg = 0, 1, …., k with prob w0, w1, …,wk

P(gene g in null | data) calculated from the zg

Bayes Estimate of FDR

FDR 9 of 17 

For any given list L containing NL genes,

FDRL = 1/NLΣg on list L P(gene g belonging to null | data)

Compare Estimates of FDR

FDR 10 of 17 

Storey FDRi = 1/Ni pi
cut P(null) N

Bayes FDRi = 1/Ni Σlist i P(gene in null | data)

NB Bayes estimate can be calculated for any list of 
genes, not just those based on ranking genes

Gene Expression Profiles

FDR 11 of 17 

Each gene has repeat 
measurements under 
several conditions: gene 
profile

Summarize profile by 
F-statistic (one for each 
gene)

Transform -> approx. 
Normal if no change 
across conditions

Simulated Data

FDR 12 of 17 

Results for Simulated Data

Usual methods (Storey q-value and SAM) overestimate FDR

Bayes mixture estimate of FDR is closer to true value

FDR 13 of 17 
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• Study of gene expression changes among 3 types of 
tumour: BRCA1, BRCA2 and sporadic tumours.

• Gene profiles across tumours summarized by F-
statistics, transformed.

• Estimate FDR and FNR (false non-discovery rate)

Breast Cancer Data

FDR 14 of 17 
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breast cancer dataset

Results for Breast Cancer Data 
(Ordered Lists of Genes)

FDR 15 of 17 

FDR, FNRGene statistics

Apoptosis
Fdr:85%

Cell cycle 
regulation
Fdr: 10%

Cytoskelet
Fdr: 87%

BRCA2 / BRCA1 / Sporadic

FDR 16 of 17 

Results for subsets of genes

Slide from Philippe Broët

• Good estimate of FDR and FNR

• Semi-parametric model for differentially expressed 
genes. 

• Obtain posterior probability for each gene.

• Can calculate FDR, FNR for any list of genes.

Summary: FDR

FDR 17 of 17 

Differential Expression

Expression-level-dependent normalisation

Borrow information across genes for variances

Joint distribution of ranks

False Discovery Rate

Flexible mixture gives good estimate of FDR

Future work

Mixture prior on log fold changes, with uncertainty
propagated to mixture parameters

Summary
Two papers submitted:

Lewin, A., Richardson, S., Marshall C., Glazier A. and 
Aitman T. (2003) Bayesian Modelling of Differential 
Gene Expression.

Broët, P., Richardson, S., Lewin, A., Dalmasso, C. and 
Magdelenat, H. (2004) A model-based approach for 
detecting distinctive gene expression profiles in 
multiclass response microarray experiments.

Available at
http ://www.bgx.org.uk/


