Bayesian modelling of gene expression data

Alex Lewin

Sylvia Richardson (IC Epidemiology) Tim Aitman (IC Microarray Centre) Philippe Broët (INSERM, Paris)

In collaboration with Anne-Mette Hein, Natalia Bochkina (IC Epidemiology) Helen Causton (IC Microarray Centre) Peter Green and Graeme Ambler (Bristol)

Contents

- Introduction to microarrays
- Differential expression
- Bayesian mixture estimation of false discovery rate

Introduction to microarrays

Post-genome Genetics Research

- Challenge: Identify function of all genes in genome
- DNA microarrays allow study of thousands of genes simultaneously

Hybridisation			
Known sequences of single-stranded DNA immobilised on microarray			
Tissue sample (with unknown concentration of RNA) fluorescently labelled			
Sample hybridised to array	DNA		
Excess sample washed off array	RNA	ACGA	
Array scanned to measure amount of R each sequence on array	NA pre	sent for	

Output of Microarray

- Each gene is represented by several different DNA sequences (probes)
- Obtain intensity for each probe
- Different tissue samples on different arrays so compare gene expression for different experimental conditions

Bayesian hierarchical model framework

- Model different sources of variability simultaneously, within array, between array ...
- Share information in appropriate ways to get better estimates, e.g. estimation of gene specific variability.
- Uncertainty propagated from data to parameter estimates.
- Incorporate prior information into the model.

Differential Expression 2 of 18

Data Set and Biological question

Previous Work (Tim Aitman, Anne Marie Glazier)

- The spontaneously hypertensive rat (SHR): A model of human insulin resistance syndromes.
- Deficiency in gene Cd36 found to be associated with insulin resistance in SHR (spontaneously hypertensive rat)

Differential Expression 3 of 18

Data Set and Biological question

Microarray Data

- 3 SHR compared with 3 transgenic rats
- 3 wildtype (normal) mice compared with 3 mice with Cd36 knocked out
- ≅ 12000 genes on each array

Biological Question

Find genes which are expressed differently in wildtype and knockout mice.

Differential Expression 4 of 18

Model for Differential Expression

- Expression-level-dependent normalisation
- Only 3 replicates per gene, so share information between genes to estimate gene variances
- To select interesting genes, use posterior distribution of ranks

Differential Expression 6 of 18

Bayesian hierarchical model for genes under one condition

Data: y_{qr} = log gene expression for gene g, replicate r α_g = gene effect $\beta_{r(g)}$ = array effect (expression-level dependent) σ_o^2 = gene variance

1st level

$$y_{gr} \sim N(\alpha_g + \beta_{r(g)}, \sigma_g^2), \Sigma_r \beta_{r(g)} = 0$$

 $\beta_{r(g)} =$ function of α_g , parameters {a} and {b}

Differential Expression 7 of 18

Bayesian hierarchical model for genes under one condition

· 2nd level

Priors for α_g , coefficients {a} and {b} $\sigma_g^2 \sim$ lognormal (μ , τ)

Hyper-parameters μ and τ can be influential. In a full Bayesian analysis, these are not fixed

• 3rd level

 $\mu \sim N(c, d) = \tau \sim lognormal (e, f)$

Differential Expression 8 of 18

Details of array effects

- Piecewise polynomial with unknown break points: $\beta_{r(g)} = \text{quadratic in } \alpha_g \quad \text{for } a_{rk-1} \leq \alpha_g \leq a_{rk} \\ \underline{\text{with coeff}} (b_{rk}^{(1)}, b_{rk}^{(2)}), \ k = 1, \ \dots \text{ #breakpoints}$
- · Locations of break points not fixed
- Must do sensitivity checks on # break points
- · Cubic fits well for this data

Differential Expression 9 of 18

Differential expression r	nodel
d _g = differential effect for gene g bet conditions	ween 2
$\begin{array}{l} \mbox{Joint model for the 2 conditions :} \\ y_{g1r} \sim \ N(\alpha_g - \frac{1}{2} \ d_g + \beta_{r(g)1} \ , \ \sigma_{g1}^2), \\ y_{g2r} \sim \ N(\alpha_g + \frac{1}{2} \ d_g + \beta_{r(g)2} \ , \ \sigma_{g2}^2), \end{array}$	(condition 1) (condition 2)
Prior can be put on d _g directly	
	Differential expression r $d_g = differential effect for gene g bet conditions Joint model for the 2 conditions : y_{g1r} \sim N(\alpha_g - \frac{1}{2} d_g + \beta_{r(g)1}, \sigma_{g1}^2),y_{g2r} \sim N(\alpha_g + \frac{1}{2} d_g + \beta_{r(g)2}, \sigma_{g2}^2),Prior can be put on d_g directly$

Differential Expression 15 of 18

Possible Statistics for Differential Expression

 $d_g \approx log fold change d_g^* = d_g / (\sigma^2_{g1} / 3 + \sigma^2_{g2} / 3)^{1/2}$ (standardised difference)

•We obtain the joint distribution of all $\{d_g\}$ and/or $\{d_g^*\}$ •Distributions of ranks

Differential Expression 16 of 18

Bayesian estimation of False Discovery Rate

Philippe Broët, AL, Sylvia Richardson

Multiple Testing

- Testing thousands of hypotheses simultaneously
- Traditional methods (Bonferroni) too conservative
- Challenge: select interesting genes without including too many false positives.

FDR 1 of 17

FDR as a Bayesian Quantity Storey showed that E(V/R | R>0) = P(truly negative | declare positive) Storey starts from p-values. We directly estimate posterior probabilities.

FDR 3 of 17

<section-header><text><text><text>

List i is all genes with p-value $p_q \leq p_i^{cut}$

For list i, P(declare positive | truly negative) = p_i^{cut}

FDR_i = P(truly -) P(declare + | truly -) / P(declare +)

= P(null) p_i^{cut} N/N_i

FDR 5 of 17

Bayesian Estimate of FDR

- Classify genes as under-expressed, ..., unaffected, ..., over-expressed (may be several different levels of over and under-expression)
- 'unaffected' <-> null hypothesis
- FDR = mean P(gene belonging to null) for genes declared positive

Mixture Model

- Normal mixture model: 'null' component = 'unaffected', several other components model the alternatives
- Number of states is unknown (estimated in model)
- Variable number of components -> semi-parametric model of alternative.

FDR 6 of 17

Summary: FDR

- Good estimate of FDR and FNR
- Semi-parametric model for differentially expressed genes.
- Obtain posterior probability for each gene.
- Can calculate FDR, FNR for any list of genes.

FDR 17 of 17

Summary

Differential Expression

Expression-level-dependent normalisation

Borrow information across genes for variances Joint distribution of ranks

False Discovery Rate

Flexible mixture gives good estimate of FDR

Future work

Mixture prior on log fold changes, with uncertainty propagated to mixture parameters

Two papers submitted:

- Lewin, A., Richardson, S., Marshall C., Glazier A. and Aitman T. (2003) Bayesian Modelling of Differential Gene Expression.
- Broët, P., Richardson, S., Lewin, A., Dalmasso, C. and Magdelenat, H. (2004) A model-based approach for detecting distinctive gene expression profiles in multiclass response microarray experiments.

Available at <u>http://www.bgx.org.uk/</u>